Stored water in basement controlled by sump pump automatically

Home Stored water in basement controlled by sump pump automatically

Sump Pump

A sump pump is a pump used to remove water that has accumulated in a water-collecting sump basin, commonly found in the basements of homes. The water may enter via the perimeter drains of a basement waterproofing system, funneling into the basin or because of rain or natural ground water, if the basement is below the water table level. Sump pumps are used where basement flooding happens regularly and to solve dampness where the water table is above the foundation of a home. Sump pumps send water away from a house to any place where it is no longer problematic, such as a municipal storm drain or a dry well.

Pump Selection

  • Automatic vs. manual operation – pump may be controlled automatically by a level switch.
  • Power – Sump pump motive power will vary from 1/4 horsepower to multiple horsepower.
  • Head pressure – The hydraulic head pressure of a sump pump describes the maximum height that the pump will move water. For instance, a sump pump with a 15 feet (4.6 m) maximum head (also called a shutoff head) will raise water up 15 feet (4.6 m) before it completely loses flow.
  • Power cord length – Running a more powerful electrical motor a long distance from the main service panel will require heavier gauge wiring to assure sufficient voltage at the motor for proper pump performance.
  • Phase and voltage – Sump pumps powered from the AC mains are available with single-phase or three-phase induction motors, rated for 110–120, 220–240, or 460 volts. Three-phase power is typically not available in residential locations.
  • Water level sensing switch type – Pressure switches are fully enclosed, usually inside the pump body, making them immune to obstructions or floating debris in the sump basin. Float switches, particularly the types attached to the end of a short length of flexible electrical cable, can get tangled or obstructed, especially if the pump is prone to movement in the basin due to torque effects when starting and stopping. Pressure switches are typically factory set and not adjustable, while float switches can be adjusted in place to set the high and low water levels in the sump basin. There is a solid state switch utilizing field-effect technology, which will turn on and off the pump through use of an internal switch and a piggyback plug.
  • Backup system and alarm for critical applications.

Backup components

A secondary, typically battery-powered sump pump can operate if the first pump fails. A battery-powered secondary pump will have a separate battery and charger system to provide power if normal supply is interrupted.

Alternative sump pump systems can be driven by municipal water pressure. Water-powered ejector pumps have a separate pump, float and check valve.[3] The float controlling a backup pump is mounted in the sump pit above the normal high water mark. Under normal conditions, the main electric powered sump pump will handle all the pumping duties. When water rises higher than normal for any reason, the backup float in the sump is lifted and activates the backup sump pump. An ejector pump can also be connected to a garden hose to supply high-pressure water, with another hose to carry the water away. Although such ejector pumps waste water and are relatively inefficient, they have the advantage of having no moving parts and offer the utmost in reliability.

If the backup sump system is rarely used, a component failure may not be noticed, and the system may fail when needed. Some battery control units test the system periodically and alert on failed electrical components.

A simple, battery-powered water alarm can be hung a short distance below the top of the sump to sound an alarm should the water level rise too high.
Get in Touch

we provide best services. Need Help?